

Notice d'utilisation ADL04Y1-PTUB_NO_(FR)_V01 03/2024

PARATB

Référence: ADLO4Y1-100

Test pour la détection et quantification de Mycobacterium avium subsp. paratuberculosis par amplification enzymatique de gène en temps réel

Test PCR – 100 réactions

Usage in vitro et strictement vétérinaire

Echantillon	Analyse individuelle	Analyse en mélange*, possible jusqu'à
Fèces	✓	4
Environnement (raclage de bouses)	✓	×
Lait	✓	×
Culture bactérienne	✓	×
Tissu	✓	×

Dépend de la situation épidémiologique, de la qualité de l'échantillon et des directives spécifiques qui existent dans certains pays (s'y référer).

Composition du kit

Matériel fourni		Kit ADL04Y1-100
		100 réactions
A6	Solution d'amplification	1 flacon lyophilisé
A0	Solution a amplification	(A reconstituer)
Dahudratian huffar	Colution do vábudrotation	1 x 6 mL flacon
Rehydration buffer	Solution de réhydratation	(Réactif prêt à l'emploi)
PARATB CTL+	Contrôle positif Mycobacterium avium subsp. paratuberculosis	1 tube à bouchon violet
PARATB CIL+	Controle positii Mycobacteriam aviam subsp. paratuberculosis	(A reconstituer)
EPC-Ext	Contrôle exogène non-cible d'extraction	1 flacon à bouchon jaune
EPC-EXI	Controle exogene non-cible d'extraction	(A reconstituer)
NIT \A/=+= ::	Eau Nucléase Free	2 x 1000 μL tube à bouchon blanc
NF-Water Eau Nucléase Free		(Réactif prêt à l'emploi)

Historique de révision

Date	Version	Modifications
03/2024	V01	Création

Note: les modifications mineures concernant la typographie, la grammaire et la mise en forme ne sont pas incluses dans l'historique des révisions.

A. Introduction

La paratuberculose est une maladie contagieuse et fatale qui touche principalement les ruminants domestiques comme les moutons, les vaches et les chèvres. Elle est aussi appelée « maladie de Johne ». La paratuberculose est causée par la bactérie *Mycobacterium avium* subsp. *paratuberculosis* (MAP) qui se multiplie dans les intestins et est excrétée dans les matières fécales. Le niveau de contamination de celle-ci évolue en fonction du stade de la maladie, de quelques bactéries par gramme de fèces en début de phase chronique, jusqu'à 10⁴ à 10¹⁰ en phase clinique (Collins et al., 1993). Cette bactérie peut ensuite être disséminée dans l'organisme de l'animal par l'intermédiaire des macrophages ; la contamination par le colostrum, le lait et le sperme sont alors possibles.

La mise en évidence de *Mycobacterium avium* subsp. *paratuberculosis* par culture est longue et fastidieuse (6 à 8 semaines). La détection par PCR est la méthode la plus rapide et spécifique pour mettre en évidence *Mycobacterium avium* subsp. *paratuberculosis*.

La quantification de MAP dans les fèces est utilisée pour classer les animaux, et identifier les animaux les plus excréteurs.

Le test ADIALYO™ PARATB permet de réaliser au choix :

- Un test PCR qualitatif.
- Un test PCR quantitatif en réalisant une gamme de quantification à partir du PARATB CTL+, en Equivalent Génome / gramme de fèces.
- Un test PCR relatif avec l'utilisation d'un fèces positif quantifié de Mycobacterium avium subsp. paratuberculosis, fourni sur demande, (réf. ADC04SQ01).

B. Principe du test

Le test ADIALYO™ PARATB repose sur l'amplification génique de fragments d'ADN spécifiques de *Mycobacterium avium* subsp. *paratuberculosis*. Il détecte simultanément en monocupule :

- Mycobacterium avium subsp. paratuberculosis (sonde marquée en FAM).
- Un contrôle interne exogène (sonde marquée en HEX ou équivalent):
 - Soit d'extraction et d'amplification si l'EPC-Ext est ajouté à l'échantillon au cours de l'extraction des acides nucléiques.
 - Soit d'amplification si l'EPC-Ext est ajouté à la solution d'amplification.

C. Conditions de stockage

A réception, stocker le kit à +2/8 °C et au sec.

Les réactifs reconstitués doivent être aliquotés et stockés à une température inférieure à -15 °C jusqu'à la date de péremption du kit. Stocker à l'abri de la lumière.

Ne pas décongeler plus de 3 fois.

D. Matériel supplémentaire et réactifs requis non fournis

- Thermocycleur avec son consommable pour PCR Temps réel.
- Appareil d'homogénéisation pour tubes.
- Pipettes de 1 10 μL, 20 200 μL et 200 1000 μL.
- Embouts Nucléase-free avec filtres pour micropipettes.
- Microtubes Nucléase-free de 1,5 mL et 2 mL.
- Gants latex ou nitrile non poudrés.
- Eau Nucléase-free.
- Système de pré-filtration : ADIAPREP™ (Bio-X Diagnostics, réf. ADPREP-200 (200 tests))
- Billes de broyage :

Pour le vibrobroyeur à billes de type Mixer Mill :

- ADIAPURE™ ALIQUOTED GLASS BEADS (Bio-X Diagnostics, réf. ADIADPBIA-480 (480 tests)).
- ADIAPURE™ GLASS BEADS RACKS 4x96 (Bio-X Diagnostics, réf. ADPBIAR-4x96 (384 tests)).

Pour le vibrobroyeur à billes de type Fast Prep ou Ribolyser :

- Lysing Matrix B (MP biomedicals, 100 tubes, réf. 116911100).
- Kit pour extraction des acides nucléiques.

Kits complémentaires pour Adoption de méthode et PCR (U47-600)

- **Quantified Extraction Positive Control PARATB Faecal (Réf. : ADC04SQ01).** Fèces positive d'extraction quantifiée en PARATB pour identifier les forts positifs (calibré à 10000 EG/gramme de fèces selon la publication de Kralik, P. *et al*, 2014 ; Beinhauerova, M et al, 2021). L'EPCQ est également un matériel de référence fournisseur pour l'adoption de méthode.
- LDpcr Positive Control PARATB (Réf. : ADC04YLD) Confirmation des performances LDpcr et LQpcr du kit
- **Extraction Positive Control PARATB (Réf. : ADC04EPC).** Matériel de référence fournisseur pour adoption de méthode (LD et LQ méthode) et pouvant également être utilisé comme sentinelle (Calibré entre 1 et 100xLD_{Méthode}).

E. Précautions d'utilisation et de sécurité

- Pour usage vétérinaire in vitro uniquement.
- Pour usage animal uniquement.
- Pour usage professionnel uniquement.
- Lire l'ensemble du protocole avant de commencer et le respecter scrupuleusement.
- Ne pas utiliser les réactifs après la date de péremption du kit.
- Ne pas utiliser les réactifs dont l'emballage est détérioré.
- Ne pas mélanger des réactifs de différents lots.
- Ne pas ouvrir les tubes PCR après amplification.
- Éliminer le matériel utilisé en respectant la législation en vigueur en matière de protection de l'environnement et de gestion des déchets biologiques.
- Ce coffret contient des composants d'origine animale. La maîtrise de l'origine et/ou de l'état sanitaire des animaux ne pouvant garantir de façon absolue que ces produits ne contiennent aucun agent pathogène transmissible, il est recommandé de les manipuler avec les précautions d'usage relatives aux produits potentiellement infectieux (ne pas ingérer; ne pas inhaler).

F. Extraction des acides nucléiques

Préparation des échantillons de fèces ou prélèvements environnementaux

Les acides nucléiques doivent être extraits à partir des échantillons avant d'utiliser le kit PCR.

<u>Utilisation du dispositif de préparation des fèces ADIAPREP (réf. ADPREP-200)</u>

- Prélever 1 cuillère de matière fécale à l'aide du dispositif ADIAPREP.
- Araser la cuillère et la réintroduire dans le dispositif.
- Vortexer jusqu'à obtention d'une suspension homogène.
- Transférer 1 mL dans un microtube, une barrette ou une plaque 96 puits.
- Centrifuger 5 minutes à 3 000 g et éliminer le surnageant.
- Ajouter au culot 300 mg de billes de broyage et 500 µL d'eau déminéralisée stérile (ou du tampon de lyse LF1 du kit ADIAPURE Lysis Flex).
- Broyer 5 minutes à 30 Hz sur Mixer Mill ou 3 x 45 secondes sur Fast Prep/Ribolyser puis centrifuger 5 minutes à 3 000 g.
- Extraire un volume de surnageant à l'aide d'un kit d'extraction recommandé.

2. Kits d'extractions

Les kits d'extraction ADN/ARN listés ci-dessous sont recommandés et fournis par Bio-X Diagnostics :

Nom du produit	Technologie d'extraction	Nombre de tests et référence
ADIAMAG™	Billes magnétiques	200 tests : réf. NADI003 800 tests : réf. NADI003-XL
ADIAPURE™ Lysis Flex	Lyse directe	500 mL : réf. ADPLF1-500
ADIAPURE™ PARATB MILK	Capture sur billes magnétiques à partir de lait	100 tests : réf. ADIADP04M1-100

Pour la préparation des fèces et l'extraction, se référer à la version de notice disponible sur le site web, indiqué sur le certificat d'analyse inclus dans le kit PCR utilisé.

Les protocoles d'extraction validés sont décrits dans le dossier de validation du kit. D'autres kits d'extraction peuvent être utilisés après validation par l'utilisateur.

Après extraction, les acides nucléiques extraits peuvent être conservés à +2/8 °C pendant quelques heures avant utilisation. Pour une conservation plus longue, ils doivent être conservés à une température inférieure à -15 °C ou -65 °C.

3. Témoins à inclure

L'emploi de témoins permet de contrôler la fiabilité des résultats. Les témoins sont inclus par série d'analyse selon les recommandations définis par les normes en vigueur (Cf. AFNOR U47-600...).

Contrôles	Validation de	Mode opératoire
Témoin réactif (NTC)	Absence de contamination pour l'amplification	5 μL NF-Water dans un puits par série PCR
PARATB CTL+ (Dilution pure à 1/10 000)	Amplification de la cible et gamme étalonnage 5 µL CTL+ dans puits pour chaq point de gamme par série PCR	
Témoin négatif d'extraction	Absence de contamination pour l'extraction et l'amplification	1 extraction (eau ou tampon de lyse) par série d'extraction
Témoin positif d'extraction	Etapes d'extraction et d'amplification	1 extraction (Echantillon positif entre 1 et 100X LD _{Méthode}) par série d'extraction
Témoin fèces positif quantifié pour PCR relative	Etapes d'extraction et d'amplification	1 extraction (Echantillon positif quantifié) par série d'extraction

G. Mode opératoire

1. Préparation de la solution d'amplification A6

- Ajouter 1000 μL de « Rehydration buffer » par tube de A6.
- Homogénéiser le tube à l'aide d'un agitateur de type vortex > 20 secondes.
- Après reconstitution, aliquoter et stocker la solution à une température inférieure à -15 °C jusqu'à la date de péremption du kit. Ne pas décongeler plus de 3 fois.
- Pour l'utilisation, se reporter au §« Amplification », Etape 1.

2. Préparation des contrôles

a. Utilisation de l'EPC-Ext

L'EPC-Ext doit être ajouté dans tous les échantillons et les témoins d'extraction.

- Ajouter 1000 μL de « NF-Water » par tube.
- Homogénéiser le tube à l'aide d'un agitateur de type vortex > 20 secondes
- Après reconstitution, aliquoter et stocker la solution à une température inférieure à -15 °C jusqu'à la date de péremption du kit. Ne pas décongeler plus de 3 fois.

- Pour l'utilisation, 2 solutions sont possibles :
 - Soit ajouter 5 µL d'EPC-Ext dans le premier tampon de lyse lors de l'extraction.
 - Soit ajouter 0,5 µL d'EPC-Ext dans chaque puits PCR (si utilisation d'extraction ADIAPURE™ PARATB MILK). Se reporter au § « Amplification », Etape 1.

b. Préparation du contrôle CTL+

Ajouter 200 µL de « NF-Water » par tube.

Homogénéiser le tube à l'aide d'un agitateur de type vortex > 20 secondes jusqu'à dissolution complète du culot bleu.

Après reconstitution, aliquoter la solution et la stocker à une température inférieure à -15°C jusqu'à la date de péremption du kit. Ne pas décongeler plus de 3 fois.

Dans le cas d'un test quantitatif, réaliser, extemporanément, une gamme étalon en eau Nucléase-free (4 points de gamme minimum dont 1 à la LO_{PCR}).

Dilution	Concentration du PARATB CTL+ (Copies IS900/PCR)
Pure	106
1/10	10 ⁵
1/100	10 ⁴
1/1000	10³
1/10000	10 ²

Utiliser **5 µL** de chaque dilution dans les puits dédiés (se reporter au § « Amplification », Etape 2).

Dans le cas d'un test qualitatif ou relatif, utiliser **5 µL** de la dilution **1/100** dans un des puits dédiés (se reporter au § « Amplification », Etape 2).

3. Amplification

Attention:

- Avant de commencer, décongeler les réactifs à température ambiante et à l'abri de la lumière.
- Homogénéiser tous les réactifs et échantillons avant utilisation.
- Replacer le reste des réactifs à une température inférieure à -15°C, après distribution.

Etape 1

Si utilisation de l'EPC-Ext à l'étape d'extraction :

Répartir ${\bf 10}~\mu L$ de réactif d'amplification A6 dans chaque puits PCR. Si non-utilisation de l'EPC-Ext à l'étape d'extraction :

Placer (n+1) x 10 μ L de réactif d'amplification A6 dans un microtube et y ajouter (n+1) x 0,5 μ L d'EPC-Ext. Répartir **10 \muL** du mélange dans chaque puits PCR.

Étape 2 : Distribuer 5 µL d'acides nucléiques extraits des échantillons et 5 µL de contrôles dans chaque puits dédié.

Utiliser 5 µL de NF-Water pour le témoin réactif.

Étape 3 : Fermer les puits avec un film ou des barrettes adaptés.

Étape 4 : Démarrer l'analyse PCR.

Le programme suivant a été développé pour les appareils ABI Prism (type 7500, QuantStudio5, Step-one...) d'Applied Biosystems, pour les Mx3000 et Mx3005P, AriaMx d'Agilent, pour les LightCycler de Roche Diagnostics, pour le Rotor-Gene Q de Qiagen, pour le CFX96 et Chromo 4 de Biorad, pour le MIC de BioMolecular System.

Programme ADN/ARN		
10 min. 45 °C		
2 min. 95 °C		
5 sec. 95 °C	40 avala a	
30 sec. 60 °C*	40 cycles	

*Lecture et paramètres pour l'acquisition de la fluorescence :

Fluorochrome	Absorbance (nm)	Emission (nm)
FAM	494	520
HEX ou équivalent	530	549
ROX	575	602

Note : Le Quencher est non fluorescent. Le mélange contient une référence passive lue dans le spectre du ROX pour les appareils ABI Prism.

Contacter votre représentant commercial ou le service client pour tout autre modèle de thermocycleur.

H. Interprétation des résultats

1. Validation et interprétation des résultats qualitatifs

Afficher l'ensemble des courbes et positionner la ligne de seuil pour chaque fluorochrome.

a. Validation de l'essai

L'amplification est valide si les résultats suivants sont obtenus. Les valeurs indicatives de Ct (Threshold Cycle) attendues pour le CTL+ sont indiquées sur le certificat d'analyse du kit.

	Amplif	ication	
Contrôles	FAM HEX ou équivalent		Validation de
Témoin réactif (NTC)	Non	Non/Oui*	Absence de contamination pour l'amplification
PARATB CTL+	Oui	Non/Oui*	Amplification de la cible
Témoin négatif d'extraction	Non	Oui	Absence de contamination pour l'extraction
Témoin positif d'extraction	Oui	Oui	Etapes d'extraction et d'amplification

^{*}selon ajout ou non de l'EPC-Ext à l'étape d'amplification.

b. Interprétation des résultats

L'extraction des acides nucléiques et l'amplification sont **valides** pour chacun des échantillons si au moins une courbe d'amplification caractéristique est observée en FAM et HEX ou équivalent.

Ampl	ification	Interprétation
FAM	HEX ou équivalent	Mycobacterium avium subsp. paratuberculosis
Non	Oui	Non détecté
Oui	Oui/Non	Détecté
Non	Non	Non déterminé

« **Non déterminé** » : absence de courbe d'amplification caractéristique. <u>Causes possibles</u> :

PCR défectueuse (présence d'inhibiteurs, erreur de programme, absence d'échantillon ou échantillon trop dégradé) et/ou

Déficience de l'extraction des acides nucléiques (perte ou destruction des acides nucléiques).

Actions conseillées :

Refaire la PCR avec l'extrait des acides nucléiques pur et dilué au 1/10^{ème} en eau Nucléase-free ;

Refaire l'extraction des acides nucléiques si le test n'est toujours pas valide ou redemander un autre prélèvement.

2. Validation et interprétation des résultats quantitatifs

a. Gamme d'étalonnage

Dilution PARATB CTL+	Concentration (copies IS900/PCR)	Amplification Cible	Validation de
Pure	10 ⁶	Oui	Amplification
1/10	10 ⁵	Oui	de la cible
1/100	10 ⁴	Oui	Paratb et de
1/1000	10 ³	Oui	la droite
1/10000	10 ²	Oui	d'étalonnage

Pour l'interprétation quantitative des résultats, établir une droite de calibration (nombre de cycles = f (Log concentration), calculer l'équation

de la droite (y=ax+b) et vérifier l'efficacité de la PCR $(Eff\%=\left(10^{\left(\frac{-1}{a}\right)}-1\right)\times 100).$

La droite d'étalonnage est valide, si :

- Les 5 points de la gamme sont amplifiés. Néanmoins, un point de la gamme pourra être enlevé si ce point n'est pas l'un des 2 extrêmes
- Le coefficient de corrélation R² est supérieur à 0,9.
- L'efficacité est comprise entre 75 et 125 %.

b. Interprétation de la quantification

La quantification d'un échantillon positif est possible uniquement dans le domaine de quantification de la méthode utilisée (cf. dossier de validation).

Amplification FAM	Statut de l'échantillon
Augus signal	Non détecté
Aucun signal	Acide nucléique non détecté
	Détecté
Signal < LQ _{METHODE}	Acide nucléique détecté en
	quantité inférieure à la LQметноре
IO cignal c IO	Détecté
LQ _{METHODE} < signal < LQ _{max}	Acide nucléique quantifiable
	Détecté
Signal > LQ _{max}	Acide nucléique détecté en
	quantité supérieure à la LQ _{max}

Lorsque l'échantillon est « quantifiable », la concentration est déterminée à l'aide de l'équation de la gamme étalon :

$$x = 10^{\left(\frac{y-b}{a}\right)} \times F$$

Où x : concentration en Equivalent Génome/gramme de fèces

y : valeur de Ct en FAM de l'échantillon positif à quantifier

b : origine à l'ordonnée de la droite

a : pente de la droite

F: facteur multiplicateur

Pour déterminer un nombre Equivalent Génome/gramme de fèces, il est nécessaire d'utiliser un facteur multiplicateur *(F)* selon le protocole d'extraction utilisé ci-dessous :

Protocole ADIAMAG (avec ADIAPREP)	F=6,4
Protocole ADIAPURE Lysis Flex (avec ADIAPREP)	F=9,4

Bio X-Diagnostics propose, sur demande au service client, un fichier Excel permettant l'analyse quantitative.

Références bibliographiques

- Collins, J. D. *et al.*, Comparison of polymerase chain reaction tests and faecal culture for detecting *Mycobacterium paratuberculosis* in bovine faeces, Vet. Microbiol. (1993).
- Beinhauerova, M., et al. Development of a reference standard for the detection and quantification of Mycobacterium avium subsp. paratuberculosis by quantitative PCR. Sci Rep (2021).
- Kralik P., et al.; Evidence of passive faecal shedding of Mycobacterium avium subsp. Paratuberculosis in a Limousin cattle herd. Vet J (2014).
- U47-600: Méthodes d'analyse en santé animale PCR (réaction de polymérisation en chaîne).

Table des symboles

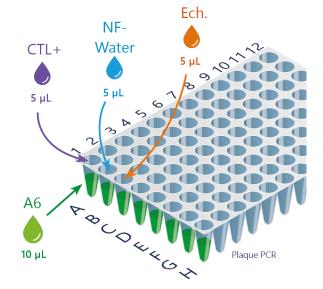
Symbole	Signification
REF	Référence du catalogue
ıı.	Fabricant
1	Limite supérieure de température
\square	Utiliser jusque
LOT	Code du lot
Ţ i	Consulter les instructions d'utilisation
\sum	Contenu suffisant pour "n" tests
VET	Pour usage vétérinaire <i>in vitro</i> uniquement – Pour usage animal uniquement
类	Conserver à l'abri de la lumière

1

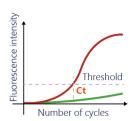
Extraire les acides nucléiques avec

Ajouter 1000 µL de Rehydration buffer au réactif d'amplification A6

Si utilisation de l'EPC à l'étape d'extraction:


Répartir 10 μL de réactif d'amplification A6

Distribuer 5 µL d'acides nucléiques, CTL+ et NF-Water


Sceller les puits

Si non-utilisation de l'EPC à l'étape d'extraction:

Préparer un prémélange de 10 µL de réactif d'amplification A6 + 0,5 µL d'EPC Répartir 10 µL du prémélange

Contact us

support.pcr@biox.com

Bio-X Diagnostics
38, rue de la Calestienne
5580 Rochefort (Belgium)

BION Diagnostice

^{*} Les notes ne se substituent pas au mode d'emploi dont elles sont une synthèse.